
Ryan Saptarshi Ray et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 3, (Part -1) March 2015, pp.04-08

 www.ijera.com 4 | P a g e

Synchronizing Parallel Tasks Using STM

Ryan Saptarshi Ray, Utpal Kumar Ray, Surojit Mondal, Parama Bhaumik
Junior Research Fellow Department of Information Technology Jadavpur University, Kolkata, India

Associate Professor Department of Information Technology Jadavpur University, Kolkata, India

B.E.(I.T.) Final Year Student Department of Information Technology Jadavpur University, Kolkata, India

Assistant Professor Department of Information Technology Jadavpur University, Kolkata, India

Abstract
The past few years have marked the start of a historic transition from sequential to parallel computation. The

necessity to write parallel programs is increasing as systems are getting more complex while processor speed

increases are slowing down. Current parallel programming uses low-level programming constructs like threads

and explicit synchronization using locks to coordinate thread execution. Parallel programs written with these

constructs are difficult to design, program and debug. Also locks have many drawbacks which make them a

suboptimal solution. One such drawback is that locks should be only used to enclose the critical section of the

parallel-processing code. If locks are used to enclose the entire code then the performance of the code drastically

decreases.

Software Transactional Memory (STM) is a promising new approach to programming shared-memory parallel

processors. It is a concurrency control mechanism that is widely considered to be easier to use by programmers

than locking. It allows portions of a program to execute in isolation, without regard to other, concurrently

executing tasks. A programmer can reason about the correctness of code within a transaction and need not worry

about complex interactions with other, concurrently executing parts of the program. If STM is used to enclose

the entire code then the performance of the code is the same as that of the code in which STM is used to enclose

the critical section only and is far better than code in which locks have been used to enclose the entire code. So

STM is easier to use than locks as critical section does not need to be identified in case of STM.

This paper shows the concept of writing code using Software Transactional Memory (STM) and the

performance comparison of codes using locks with those using STM. It also shows why the use of STM in

parallel-processing code is better than the use of locks.

Keywords- Parallel Programming; Multiprocessing; Locks; Transactions; Software Transactional Memory

I. INTRODUCTION
Generally one has the idea that a program will

run faster if one buys a next-generation processor.

But currently that is not the case. While the next-

generation chip will have more CPUs, each individual

CPU will be no faster than the previous year’s model.

If one wants programs to run faster, one must learn to

write parallel programs as now multi-core processors

are becoming more and more popular. The past few

years have marked the start of a historic transition

from sequential to parallel computation. The

necessity to write parallel programs is increasing as

systems are getting more complex while processor

speed increases are slowing down. Parallel

Programming means using multiple computing

resources like processors for programming so that the

time required to perform computations is reduced [1].

II. BUS TICKET COUNTER

PROBLEM
In the Bus Ticket Counter Problem initially only

one counter is open from which passengers may

purchase tickets. As more counters open the options

for the passengers (counters from which they can

purchase tickets) increases, hence the time taken for

purchasing tickets decreases. The problem is to

synchronize the operations of the different counters

so that the passengers do not have to face any delay.

III. BUS TICKET COUNTER PROBLEM

USING LOCKS
The hardest problem that should be overcome

when writing parallel programs is that of

synchronization. Multiple threads may need to access

the same locations in memory and if careful measures

are not taken the result can be disastrous. If two

threads try to modify the same variable(s) at the same

time, data can become corrupt. Currently locks are

used to solve this problem. Locks ensure that a

critical section, which is a block of code that contains

variable(s) that may be accessed by multiple threads,

can only be accessed by one thread at a time. When a

thread tries to enter a critical section, it must first

acquire that section's lock. If another thread is already

holding the lock, the former thread must wait until the

RESEARCH ARTICLE OPEN ACCESS

Ryan Saptarshi Ray et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 3, (Part -1) March 2015, pp.04-08

 www.ijera.com 5 | P a g e

lock-holding thread releases the lock, which it does

when it leaves the critical section [2].

In the parallel program using threads and locks

which solves the Bus ticket-counter problem the time

taken for processing of passenger’s request at each

counter(x) and the number of passengers at each

counter(y) are taken as input. There is one thread

function-“tctr()”.

The following code snippet shows the tctr thread:

void *tctr(int *num_ptr)

{

 unsigned long j;

 int num,*number_ptr;

 number_ptr=num_ptr;

 num=*number_ptr;

 pthread_mutex_lock(&mutex1);

 arr[num]=x*y;

 if(arr[num]<=proc)

 {

 proc= arr[num];

 if(x<prev_bestproc)

 {

 prev_bestproc=x;

 }

 }

 pthread_mutex_unlock(&mutex1);

 pthread_exit(0);

}

In the thread “tctr” the amount of time for which the

passenger has to wait to purchase ticket from that

counter is calculated by the following code snippet:

 pthread_mutex_lock(&mutex1);

 arr[num]=x*y;

 if(arr[num]<=proc)

 {

 proc= arr[num];

 if(x<prev_bestproc)

 {

 prev_bestproc=x;

 }

 }

 pthread_mutex_unlock(&mutex1);

 pthread_exit(0);

3 lock calls are being used in the program.

pthread_mutex_init(&mutex1,NULL), is used for

lock initialization.

pthread_mutex_lock(&mutex1), is used for locking.

This means that any thread which needs to access the

critical section has to first acquire the lock on

mutex1.

pthread_mutex_unlock(&mutex1), is used for

unlocking.

 In the program the region where more than one

thread may access the global array arr at the same

time is the critical section. Thus this region is

enclosed within locks. Hence there is no

synchronization problem in the above code.

IV. EXPERIMENTAL RESULTS FOR

BUS TICKET-COUNTER PROBLEM

USING LOCKS
The following table shows the experimental

results for Bus ticket-counter problem using locks:

NUMBE

R OF

THREAD

S

TIME

TAKEN(SE

C)

SPEEDU

P

EFFICIENC

Y

1 12 1 1.00

2 6 2 1.00

3 4 3 1.00

4 3 4 1.00

5 3 4 0.80

6 2 6 1.00

7 2 6 0.86

8 2 6 0.75

9 2 6 0.67

10 2 6 0.60

11 2 6 0.55

12 1 12 1.00

The corresponding graphs for the above

experimental results are shown below:

From the above graph we can see that as the

number of threads increases the time taken decreases.

Ryan Saptarshi Ray et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 3, (Part -1) March 2015, pp.04-08

 www.ijera.com 6 | P a g e

From the above graph we can see that as the

number of threads increases the speedup also steadily

increases.

From the above graph we can see that as the

number of threads increases the efficiency varies

around 1.

V. BUS TICKET-COUNTER PROBLEM

USING STM
The synchronization problem can also be solved

using STM. If STM is used in a program then we do

not have to use locks in the program. Thus the

problems which occur due to the presence of locks in

a program do not occur in this type of code. The

critical section of the program has to be enclosed

within a transaction. Then STM by its internal

constructs ensures synchronization in the program.

The structure of the program using threads and

STM which solves the bus ticket-counter problem is

same as that of the program using threads and locks.

The only difference is that STM is being used in this

program.

The following code snippet shows the tctr thread:

void *tctr(int *num_ptr)

{

 unsigned long j;

 unsigned char byte_under_stm;

 int num,*number_ptr;

 number_ptr=num_ptr;

 num=*number_ptr;

 stm_init_thread();

 START(0,RW);

 byte_under_stm=(unsigned char)

LOAD(&arr[num]);

 byte_under_stm=x*y;

 if(byte_under_stm<=proc)

 {

 proc= byte_under_stm;

 if(x<prev_bestproc)

 prev_bestproc=x;

 }

 STORE(&arr[num],byte_under_stm);

 COMMIT;

 stm_exit_thread();

 pthread_exit(0);

}

The STM functions and calls which have been used

in the code are explained below:

stm_init is used to initialize the TinySTM library at

the outset. It is called from the main thread before

accessing any other functions of the TinySTM

library.

stm_init_thread is used to initialize each thread that

will perform transactions. It is called once from each

thread that performs transactional operations before

the thread calls any other functions of the TinySTM

library. In this program it is called from the thread

tctr.

stm_exit is the corresponding shutdown function for

stm_init. It cleans up the TinySTM library. It is called

once from the main thread after all transactional

threads have completed execution.

stm_exit_thread is the corresponding shutdown

function for stm_init_thread. It cleans up the

transactional thread. It is called once from each

thread that performs transactional operations upon

exit. In this program it cleans up the thread tctr.

START(0,RW) is used to start a transaction. In this

program it is used in the thread tctr.

COMMIT is used to close the transaction. In this

program it is used in the thread tctr.

byte_under_stm=(unsigned char) LOAD(&arr[num]);

Ryan Saptarshi Ray et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 3, (Part -1) March 2015, pp.04-08

 www.ijera.com 7 | P a g e

stores the value of arr[num] in byte_under_stm. In

this program it is used in the thread tctr.

STORE(&arr[num],byte_under_stm);

stores the value of byte_under_stm in arr[num]. In

this program it is used in the thread tctr.

In this program the region where more than one

thread may access the global array arr at the same

time is the critical section. Thus this region is

enclosed within transaction using TinySTM which is

a type of STM. Hence there is no synchronization

problem in the above code.

VI. EXPERIMENTAL RESULTS FOR

BUS TICKET-COUNTER PROBLEM

USING STM
The following table shows the experimental

results for bus ticket-counter problem using STM:

NUMBER

OF

THREADS

TIME

TAKEN

(SEC)

SPEEDUP EFFICIENCY

1 12 1 1.00

2 6 2 1.00

3 4 3 1.00

4 3 4 1.00

5 3 4 0.80

6 2 6 1.00

7 2 6 0.86

8 2 6 0.75

9 2 6 0.67

10 2 6 0.60

11 2 6 0.55

12 1 12 1.00

The corresponding graphs for the above

experimental results are shown below:

From the above graph we can see that as the

number of threads increases the time taken decreases.

From the above graph we can see that as the

number of threads increases the speedup also steadily

increases.

From the above graph we can see that as the

number of threads increases the efficiency varies

around 1.

VII. PERFORMANCE COMPARISION OF LOCKS

AND STM
From the above experimental results we see that

performance of locks and STM are similar.

 In the code with locks we have enclosed only the

critical section with locks. When we enclosed the

entire code with locks then the performance

drastically decreased. In the code with STM also we

have enclosed only the critical section with STM.

When we enclosed the entire code with STM then

also the performance remained same. So it can be

said that performance of STM is better than that of

locks. Also we can say that STM is easier to use than

locks as critical section need not be identified in case

of STM.

VIII. CONCLUSION
STM has been shown in many ways to be a good

alternative to locks for writing parallel programs.

STM provides a time-tested model for isolating

concurrent computations from each other. This model

Ryan Saptarshi Ray et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 3, (Part -1) March 2015, pp.04-08

 www.ijera.com 8 | P a g e

raises the level of abstraction for reasoning about

concurrent tasks and helps avoid many parallel

programming errors.

This paper has discussed how STM can be used

to solve the problem of synchronization in parallel

programs. STM has ensured that lock-free parallel

programs can be written. This ensures that the

problems which occur due to the presence of locks in

a program do not occur in this type of code. It has

also been shown that STM is easier to use than locks

as critical section need not be identified explicitly in

case of STM. In case of STM if the entire code is

enclosed within STM the performance of the code is

same as that of the code in which only the critical

section is enclosed within STM. But in case of locks

if the entire code is enclosed within locks then the

performance decreases sharply. So it has been shown

that the performance of STM is much better than that

of locks.

Many aspects of the semantics and

implementation of STM are still the subject of active

research. While it may still take some time to

overcome the various drawbacks, the necessity for

better parallel programming solutions will drive the

eventual adoption of STM. Once the adoption of

STM begins it will pick up momentum and make a

very large impact on software development in the

long run. In the near future STM will become a

central pillar of parallel programming.

REFERENCES
[1] Simon Peyton Jones, “Beautiful

concurrency”.

[2] Elan Dubrofsky, “A Survey Paper on

Transactional Memory”.

[3] Pascal Felber, Christof Fetzer, Torvald

Riegel, “Dynamic Performance Tuning of

Word-Based Software Transactional

Memory”.

[4] http://en.wikipedia.org/wiki/Transactional_

memory

[5] James Larus and Christos Kozyrakis.

“Transactional Memory”

[6] Pascal Felber, Christof Fetzer, Patrick

Marlier, Torvald Riegel, “Time-Based

Software Transactional Memory”

[7] Tim Harris, James Larus, Ravi Rajwar,

“Transactional Memory”

[8] Mathias Payer, Thomas R. Gross,

“Performance Evaluation of Adaptivity in

Software Transactional Memory”

[9] Kevin E. Moore, Jayaram Bobba, Michelle

J. Moravan, Mark D. Hill, David A. Wood.,

“LogTM: Log-based Transactional

Memory”

[10] Dave Dice , Ori Shalev , Nir Shavit.,

“Transactional Locking II”

[11] http://tmware.org

[12] Maurice Herlihy, J. Eliot B. Moss,

“Transactional Memory: Architectural

Support for Lock-Free Data Structures”.

[13] Martin Schindewolf, Albert Cohen,

Wolfgang Karl, Andrea Marongiu, Luca

Benini, “Towards Transactional Memory

Support for GCC”.

[14] Virendra J. Marathe, Michael F. Spear,

Christopher Heriot, Athul Acharya, David

Eisenstat, William N. Scherer III, Michael L.

Scott, “Lowering the Overhead of

Nonblocking Software Transactional

Memory”.

[15] Utku Aydonat, Tarek S. Abdelrahman,

Edward S. Rogers Sr., “Serializability of

Transactions in Software Transactional

Memory”.

[16] Maurice Herlihy, Nir Shavit, “The Art of

Multiprocessor Programming”.

[17] Brendan Linn, Chanseok Oh, “G22.2631

project report: software transactional

memory”.

[18] Ryan Saptarshi Ray, “Writing Lock-Free

Code using Software Transactional Memory

”.

[19] Ryan Saptarshi Ray,Utpal Kumar Ray

“Different Approaches for improving

performance of Software Transactional

Memory ”.

http://en.wikipedia.org/wiki/Transactional_memory
http://en.wikipedia.org/wiki/Transactional_memory
http://tmware.org/

